Ce séminaire propose d’explorer différentes méthodes d’analyse morphologique des ossements avec une emphase sur la morphologie tridimensionnelle. Il présente donc quelques approches de bases en analyses osseuses avec présentations d'applications concrètes en paléoanthropologie. L’emphase sera mise sur des questions relatives à l'évolution humaine ancienne, mais plusieurs des ces méthodes s’appliquent à toute sorte de périodes, incluant les périodes historiques et récentes. Des textes seront à lire et à discuter à chaque semaine et chaque étudiant devra préparer au moins un commentaire ou question sur chacune des lectures obligatoires. Une copie de ces questions et commentaires sera à remettre à chaque semaine (au début du séminaire). Chaque étudiant sera en charge de l’animation d’une séance ordinaire en équipe de deux et devra aussi faire une présentation de son travail final à la fin du semestre. Un brouillon du travail pratique est à remettre le 1er novembre et chaque étudiant sera en charge de critiquer de façon constructive les brouillons de deux autres étudiants.

<table>
<thead>
<tr>
<th>Semaine</th>
<th>Sujet</th>
</tr>
</thead>
<tbody>
<tr>
<td>6 septembre</td>
<td>• Introduction</td>
</tr>
<tr>
<td>13 septembre</td>
<td>• Principes de base en biomécanique</td>
</tr>
<tr>
<td>20 septembre</td>
<td>• Allométrie, Adaptation du squelette</td>
</tr>
</tbody>
</table>
| 27 septembre | • Modelage et remodelage
 - **Question**: Est-ce que l’analyse en coupe reflète vraiment le comportement? |
| 4 octobre | • Articulations : mobilité et charges
 - **Question**: Est-ce que les articulations sont des structures plastiques? |
| 11 octobre | • Écomorphologie |
| 18 octobre | • Enthèses et activités
 - **Question**: Est-ce que les enthèses reflètent les activités et/ou leur intensité? |
| 25 octobre | Semaine de relâche |
| 1er novembre | • Méthodes d’acquisition d’images-Bases |
| 8 novembre (semaine) | • Atelier en laboratoire d’écomorphologie
 (Attention): Le cours aura lieu en laboratoire à une période qui reste à déterminer |
| 15 novembre | • Morphométrie multivariée |
| 22 novembre | • Analyse tridimensionnelles : nouvelles applications |
| 29 novembre | • Présentations étudiantes |
| 6 décembre | • Présentations étudiantes |
Évaluation

<table>
<thead>
<tr>
<th>Participation en classe</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Animation de la séance</td>
<td>20%</td>
</tr>
<tr>
<td>Participation générale</td>
<td>10%</td>
</tr>
<tr>
<td>Présentation du travail final</td>
<td>10%</td>
</tr>
<tr>
<td>Questions ou commentaire sur les lectures</td>
<td>10%</td>
</tr>
<tr>
<td>Premier brouillon</td>
<td>5%</td>
</tr>
<tr>
<td>Révision des brouillons des autres étudiants</td>
<td>10%</td>
</tr>
<tr>
<td>Travail final</td>
<td>35%</td>
</tr>
</tbody>
</table>

Échéanciers

<table>
<thead>
<tr>
<th>Échéanciers</th>
</tr>
</thead>
<tbody>
<tr>
<td>Remise du brouillon</td>
</tr>
<tr>
<td>Remise de la révision des brouillons</td>
</tr>
<tr>
<td>Présentations étudiantes</td>
</tr>
<tr>
<td>Remise du travail final</td>
</tr>
</tbody>
</table>

Textes obligatoires

J’ai une copie disponible pour la photocopie. Lorsque disponible, un lien sera disponible aussi sur StudiUM pour télécharger les PDFs.

LECTURES

Pour la semaine du 15 janvier: Principes de base en biomécanique
 Chapitre 2 : Why structures carry loads
 Chapitre 3 : The invention of stress and strain
 Chapitre 4 : Designing for safety
 Chapitre 21 : Structural elements of the body (pp.419-442).
 Chapitre 22 : Mechanics of support and movement (pp.443-464).

Pour la semaine du 22 janvier: Allométrie, Adaptation du squelette
 Chapitre 23 : Form, function and body size (pp. 465-471).
Schmidt-Nielsen K. 1984. Scaling. Why is animal size so important?
 Chapitre 2 : Problems of size and scale.
Pour la semaine du 29 janvier: Modelage et remodelage
Robling AG, Stout SD. 2003. Histomorphology, geometry, and mechanical loading in past populations.
 In: SC Agarwal, SD Stout (éd.), Bone loss and osteoporosis. p. 189-205.

Pour la semaine du 5 février: Articulations : mobilité et charges
 Chapitre 21 : Structural elements of the body (Révision des pages 436-442).
 Partie du chapitre 7 : The shapes of bones, p. 225-231
 Chapitre 8: Articulations (pp. 245-271).
 Début du Chapitre 7: Synovial joint mechanics, p. 275-280.
Lieberman, DE, Devlín, MJ, Pearson, OM. 2001. Articular area responses to mechanical loading:

Pour la semaine du 12 février: Écomorphologie
Pour la semaine du 19 février: Enthèses et activités

Pour la semaine du 1 novembre: Méthodes d’acquisition d’image-Bases

Pour la semaine du 8 novembre: Atelier en laboratoire d’écomorphologie

Pour la semaine du 15 novembre: Morphométrie multivariée
Pour la semaine du 22 novembre: Analyses tridimensionnelles: nouvelles applications

TRADUCTION DE TERMES DE BIOMÉCANIQUE

<table>
<thead>
<tr>
<th>English</th>
<th>French</th>
</tr>
</thead>
<tbody>
<tr>
<td>Load</td>
<td>Charge</td>
</tr>
<tr>
<td>Mass</td>
<td>Masse</td>
</tr>
<tr>
<td>Weight</td>
<td>Poids</td>
</tr>
<tr>
<td>Lever</td>
<td>Levier</td>
</tr>
<tr>
<td>Load arm</td>
<td>Distance de l’appui à la résistance</td>
</tr>
<tr>
<td>Lever arm</td>
<td>Distance de l’appui à la force appliquée</td>
</tr>
<tr>
<td>Strength</td>
<td>Ténacité</td>
</tr>
<tr>
<td>Stress</td>
<td>Pression/tension</td>
</tr>
<tr>
<td>Strain</td>
<td>Allongement, raccourcissement, contrainte (Déformation ?)</td>
</tr>
<tr>
<td>Young’s modulus</td>
<td>Module de Young</td>
</tr>
<tr>
<td>Shear</td>
<td>Cisaillement</td>
</tr>
<tr>
<td>Strong</td>
<td>Fort</td>
</tr>
<tr>
<td>Weak</td>
<td>Fragile/faible</td>
</tr>
<tr>
<td>Stiffness</td>
<td>Raideur/rigidité</td>
</tr>
<tr>
<td>Ductile</td>
<td>Malléable</td>
</tr>
<tr>
<td>Brittle</td>
<td>Rigide/cassant (se brise en morceaux)</td>
</tr>
</tbody>
</table>
MODÉLISATION DES OS LONGS

Les os longs peuvent être modelés comme des poutres.
La ténacité d’un os long peut être calculée.

Force axiale

Proporionnelle seulement à la quantité de matériau perpendiculaire à la force

Force de flexion

Proporionnelle à la quantité de matériau, la distribution du matériau, la longueur de l’os.

Ténacité en flexion = \(\frac{I}{My} \)

Où M = Force * distance(d)

\(y \) = distance de l’axe neutre jusqu’au point le plus distant de l’os
(perpendiculaire à la coupe)

I = second moment de l’aire

Second moment de l’aire (I)

\[I = \sum \partial A y^2 \]

\(\sum \partial A \) = aire de chacune des minuscules unités (voir figure), unité mm\(^2\)

\(y \) = distance de cette aire à l’axe neutre, unité mm

Plus le matériau est éloigné de l’axe neutre, plus grand est le second moment et donc résiste mieux les forces en flexion.

I reflète la « résistance » dans un axe (souvent AP ou ML)

Aussi \(I_{\text{max}} \) et \(I_{\text{min}} \)

\(\frac{I_{\text{ap}}}{I_{\text{ml}}} \) = forme

\(\frac{I_x}{I_y} = 1 \) Distribution du matériau osseux est uniforme.

\(\frac{I_x}{I_y} > 1 \) Ténacité est plus grande dans l’axe AP.

\(\frac{I_x}{I_y} < 1 \) Ténacité est plus grande dans l’axe ML.

J = moment polaire d’inertie (proportionnelle à la ténacité en torsion)

\[J = I_{\text{ap}} + I_{\text{ml}} \]
ISOMÉTRIE ET ALLOMÉTRIE

Distance linéaire \(L_2 = k \times L_1 \)

Aire ou Surface \(L_2^2 = k^2 \times L_1^2 \)

Volume (masse) \(L_2^3 = k^3 \times L_1^3 \)

Par exemple, en doublant les distances linéaires, les surfaces (ou aires) sont quadruplées et le volume est 8 fois plus grand.

Distance linéaire \(L_2 \Rightarrow 2 \times L_1 \)

Aire ou Surface \(L_2^2 = 2^2 \times L_1^2 = 4 \times L_1^2 \)

Volume \(L_2^3 = 2^3 \times L_1^3 = 8 \times L_1^3 \)

Force des os ou des muscles est proportionnelle à leur aire en coupe.

Si l’animal est doublé en taille (gonflé pour qu’il soit deux fois plus gros), il est donc 8 fois plus lourd, mais la force/résistance de ses muscles et de ses os longs n’est que 4 fois plus grande. Son corps doit donc s’adapter à la force/résistance relativement réduite de ses os et muscles.

Stratégies
- Géométrie différente (allométrie au sens classique)
- Locomotrice
- Posturale
- Comportementale
- Alimentaire

Souvent, toutes ces réponses simultanément

Relation exponentielle

\[y = a \times x^b \]

En faisant le log (naturel ou base 10) des variables, la relation devient linéaire.

\[\ln y = \ln a + b \ln x \]

\(b \) devient la pente de la régression.

\(b \) représente le rythme de changement.

L’isométrie d’une pente est définie par [dimension de l’ordonnée/dimension de l’abscisse]. Pour une comparaison longueur par masse (comme à gauche), on calcule la pente comme suit: 1/3 (longueur=1 dimension; masse=3 dimensions). La pente isométrique est donc 1/3 ou 0,33333. Un pente plus grande indique une allométrie positive et une pente plus petite une allométrie négative.